
CMPT 409/981: Quantum Circuits and Compilation

Assignment 2

Due October 28th at the start of class
on paper or by email to the instructor

In this assignment we will investigate efficient implementation of the quantum Fourier transform
over Clifford+T via an alternative to gate approximation called catalytic embedding.

The quantum Fourier transform is a crucial building block of many quantum algorithms. It can
be defined as the unitary transformation on n qubits

QFTn : |~x〉 7→ 1√
2n

∑
~y∈{0,1}n

e
2πi
2n
~x~y|~y〉

where ~x~y is interpreted as integer multiplication, which can be expanded explicitly as

~x~y = (2n−1x1 + · · ·+ 2xn−1 + xn)(2n−1y1 + · · ·+ 2yn−1 + yn).

The QFT can be implement via a circuit over H gates and controlled Rk :=

[
1 0

0 e
2πi

2k

]
gates with

quadratic gate complexity. In particular, the circuit can be written as

x1 H R2 R3 · · · Rn · · ·

x2 • H R2 · · · Rn−1 · · ·

x3 • • H · · · Rn−2 · · ·
...

. . .
. . .

xn · · · • • • · · · H

or in pseudo-code,

1. for i from 1 to n:

(a) For j from i to n

i. Apply a controlled-Rj−i+1 to qubits j and i

(b) Apply H to qubit i
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Sinse the QFT is important in many algorithms suited to Fault-tolerant quantum computation,
including Shor’s algorithm, we wish to gain an understanding of how expensive it is to compute.
We will assume in this assignment that our fault-tolerant quantum computer can implement gates
from the Clifford+T gate set, that is

H =
1√
2

[
1 1
1 −1

]
, T =

[
1 0

0 ω := eiπ/4

]
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Note that the controlled Rk gate is symmetric in the target and control, and that

•

Rk
=

• • Rk+1

R†k+1
Rk+1

Question 1 [3 points]: Concrete resource estimates

While Rk is not in Clifford+T for any k ≥ 4, we can implement the QFT over Clifford+T by
approximating Rk gates. The Ross-Selinger algorithm produces ε-approximations of diagonal gates
(e.g. Rk) over Clifford+T with (approximately) 3 log2(1/ε) T gates. How many T gates would be
used to implement the QFT on 32 qubits to overall precision 10−7 if the Ross-Selinger algorithm
is used for single-qubit gate approximations? This is called a resource estimate, and is important
in quantifying how much quantum advantage there is for real-world problems, and at what point
we may start to see real advantage from quantum computers.

Do NOT simply give the big-O complexity — the (leading) constants are the im-
portant factor here!

Question 2 [10 points]: Catalytic QFT

The previous resource estimate seems a little high. We’ll now develop a technique which can get
our resource counts down to something more manageable.

Recall the T gate teleportation circuit from class using the resource state |A〉 = TH|0〉:

|ψ〉 • S T |ψ〉

|A〉

1. Verify that if measurement is deferred and the classically-controlled S gate is replaced with
a quantum controlled S, then the final state is (T |ψ〉)⊗ |A〉. That is,

|ψ〉 • • T |ψ〉

|A〉 S |A〉

This is an example of a more general technique called catalytic embedding, whereby a unitary
over a ring extension R[α] is embedded into a unitary over the base ring R together with a
resource state. Likewise, catalytic embedding generalizes the classic representation of C using
R-valued matrices.
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2. Give a circuit using a single |A〉 state to perform 2 T gates using only CNOT and CS gates.
Note that with gate teleportation, a single |A〉 state can only be used to perform one T gate,
as it is destroyed at the end.

Note: this doesn’t help us a whole lot at this point, because the controlled-S gate is non-
Clifford, and in fact requires 3 T gates to implement.

3. Show that this construction generalizes to all Rk gates with the resource state |Ak〉 =

RkH|0〉 =

[
1

e2πi/2
k

]
.

Explicitly, show that the Rk gate can be constructed from |Ak〉 states, CNOT and
controlled-Rk−1 gates.

4. Does the T -gate teleportation circuit also generalize to allow the teleportation of Rk gates
given an |Ak〉 state and fault-tolerant CNOT,CRk−1 gates?

5. Try to implement a R4 :=
√
T gate over Clifford+T using the construction from the previous

question and the fact that CT = (
√
T ⊗
√
T )CNOT (I ⊗

√
T
†
)CNOT . What is the problem?

6. Extend your Rk construction to a construction of the multiply-controlled Rk gate using |Ak〉
states, multiply-controlled Toffolis and multiply-controlled Rk−1 gates.

7. Now use your construction recursively to give an explicit circuit implementing a controlled-
R4 (controlled-

√
T ) gate using only multiply-controlled Toffoli gates and ancillary

resource states |Ak〉 for any k. It may help to note that R1 := Z,R0 := I.

At this point we have shown that the QFT can be implemented as follows, where −1 denotes
the decrement function on a binary register, which we will explore in the next question...

x1 H • • · · · • · · ·

x2 • H • · · · • · · ·

x3 • • H · · · · · ·
...

. . .
. . .

xn · · · • • · · · H

|An〉 · · ·

−1

· · · |An〉
|An−1〉 · · ·

−1

· · · |An−1〉
...

. . .|A2〉
−1

· · · · · · |A2〉
|A1〉 −1 −1

· · · · · · |A2〉
|A0〉 · · · · · · |A1〉
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Question 3 [8 points]: Reversible arithmetic

We define the modular increment function as

(+1) : |~x〉 7→ |~x+ 1 mod 2n〉

where ~x is taken as a big-endian integer, i.e. x1 is the high-order bit. That is, (+1) adds 1 to a
positive integer represented in big endian binary as an n-bit string ~x ∈ {0, 1}n ignoring overflow
(i.e. ~x+ 1 mod 2n). Note that the inverse of a modular increment is a modular decrement.

1. Verify that a cascade of controlled-increment circuits corresponds to binary addition. That
is, let U+|~x〉|~y〉 = |~x〉|~y + ~x mod 2n〉. Then

x1 • · · ·
x2 • · · ·

...
. . .xn · · · •

y1 +1
+1

· · ·

+1y2 · · ·
...

. . .
yn · · ·

=

U+

...

...

2. Design an efficient reversible circuit performing modular addition

(U+) : |~x〉|~y〉 7→ |~x〉|~y + ~x mod 2n〉

To be efficient, your implementation should use a linear number (i.e. O(n)) of Toffoli gates
and as many clean ancillas and X and CNOT gates as needed. The ancillas must be
returned to their initial state. Note that since this is an in-place addition (i.e. an input
register is modified directly), this means you cannot uncompute your ancillary states with
the Bennett trick. Give the number of Toffoli gates your circuit uses as a function of n.

You may describe your circuit via pseudo-code rather than a circuit diagram if
you prefer.

Hint: try to add two binary numbers by hand using long addition and see if you can replicate
this process in a reversible circuit.

3. How would you go about adding a control to this entire circuit to make a controlled modular
adder? How many extra Toffoli gates does this cost? Can you do it using only roughly 2n
extra Toffoli gates? (Hint: compute all the carry bits first)

Question 4 [4 points]: Resource estimate redux

Questions 2 and 3 together give an implementation of the QFT on n qubits using n resource states
and n controlled modular adders, or O(n2) Toffoli gates. Recalling that the resource states may
be implemented as |Ak〉 := RkH|0〉, we can obtain a fault-tolerant circuit over Clifford+T gates by
approximating an Rk gate for each resource state, and expanding the Toffoli gates over Clifford+T .

Calculate the number of T gates this implementation of the QFT on 32 qubits uses for ε = 10−7

and compare to the estimate you calculated in question 1. Can you see any further benefit from
this implementation if multiple QFTs are needed within a single algorithm?
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